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ABSTRACT

A finite element method is developed to solve initial-boundary value -jroblems

for vector systems of partial differential equiations in one space dimension and

time. The method automatically adapts the computational mesh as the solution pro-

gresses in time and is thus able to follow and resolve relatively sharp transitions

such as mild boundary layers, shock layers, or wave fronts. This 1-irmits an accur-

ate solution to be calculated with fewer mesh points than would be nec-essary with a

uniform mesh.
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The overall method contains two parts, a solution algorithm and a mesh

selection algorithm. The solution algorithm is a finite element-Galerkin

method on trapezoidal space-time elements, using either piecewise linear or

cubic polynomial approximations and the mesh selection algorithm builds upon

similar work for variable knot spline interpolation.

A computer code implementing these algorithms has been written and applied

to a number of problems. These computations confirm that the theoretical error

estimates are attained and demonstrate the utility of variable mesh methods for

partial differential equations.
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1. Introduction

In this paper we construct an adaptive grid finite element procedure to find

numerical solutions of M-dimensional vector systems of partial differential equa-

tions having the form

(1.1) Lu : u + f(x'tu,) - ID(x,t,u)u I = 0, 0 < x < a, t > 0,
- t _x -.. x- Xx

subject to the initial and linear separated boundary conditions

(1.2) u(x,0) = u0 (x), 0 < x < a,

-1-.(O t ) A 11 ( t ) ( O t) + A1 2 (t)u X (O t) = b (t),

(1.3)

-2- ( a ' t )  A 21 ( t ) u ( a t) + A22 (t)u
x (a t ) = b2(t)' t > O.

There are k initial boundary conditions at x = 0 and k2 terminal boundary con-

ditions at x = a. We are primarily concerned with solving diffusion problems

where D is positive definite and kI + k2 = 2M; however, we will not restrict

ourselves to this case, but instead we assume that conditions are specified so

that (1.1)-(U.3) has an isolated solution.

Problems of the above form arise in many applications which model problems

as diverse as heat conduction (cf. Friedman [16]), determining bacterial motion

(cf. Keller and Odell 125,30]), combustion (cf. Kapila 124]), chemical reactions

(cf. Fife [14]), population dynamics (cf. Hoppensteadt [20]), and convecting

flows (cf. Batchelor 14]). Therefore, a general purpose code to solve (1.1)-

(1.3) numerically would be extremely useful.

Many of the problems mentioned above have solutions which contain sharp

transitions such as boundary layers, shock layers, or wave fronts. In order to

resolve such nonuniformities using a minimum number of mesh points it is desir-

able to concentrate the mesh within the transition layers. Since these transi-

tion layers can move, it is all the more desirable for the mesh to adapt itself

with the evolving solution. To do this we develop methods that (i) discretize
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(1.1)-(1.3) on a nonuniform mesh and (ii) determine the proper mesh point loca-

tions.

We discretize (1.1)-(1.3) using a finite element Galerkin method on trape-

zoidal space-time elements. This approach is similar to that of Jamet and

Bonnerot [6,22] and it was chosen because it is generally easier to generate

high order approximations to partial differential equations on a nonuniform mesh

with finite element methods than with finite difference methods. The accuracy

and order of convergence of our methods are analyzed in Davis [11] and are

demonstrated experimentally in Section 4 of this paper.

Adaptive mesh selection strategies typically involve some recomputation of

the solution. That is, an initial solution is computed on a coarse mesh and

this is used to determine whether to add mesh points to some portion of the

domain and redo the calculation, redo the calculation using a more accurate

method, redo the computation using some combination of these methods, or accept

the present computation. Algorithms of this general type have been developed

and successfully applied to adaptive quadrature (cf. eg. Rice [33] and Lyness

and Kaganove [28]), two-point boundary value problems (cf. eg. Childs et al

[91), elliptic boundary value problems (cf. eg. Carey (8] and Brandt [7]), and

parabolic and hyperbolic problems (cf. eg. Berger et al [5] and white [37]).

Primarily because of the expense involved in recomputing the solution of

the partial differential equations at possibly every time step we have developed

an algorithm which initially places a fixed number of mesh points in optimal

locations and then attempts to move them so that their locations remain optimal.

Algorithms of this type have been used by Lawson [26], deBoor [12,13], and Jupp

[23] for variable knot spline interpolation and it is their work that motivated

our mesh selection algorithms.

A different approach to this problem was proposed by Miller and Miller [29]

and later extended by Galinas et al [17]. They approximated the solution of
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parabolic partial differential equations by piecewise linear polynomials where

both the polynomial coefficients and the mesh on which they were defined were

unknown functions of time. These functions were determined by minimizing the

least squares residuals. They found that the mesh points could coalesce in

certain situations and they avoided this by adding a number of spring and

damping terms as constraints to the equations.

One advantage of the above approach is that it readily extends to higher

dimensional problems. However, we are not convinced that it is necessary to

couple the solution and mesh selection methods. This can dramatically increase

the size of the discrete system without offering any corresponding increase in

order of accuracy. Furthermore, the entire solution procedure must halt if an

acceptable mesh cannot be calculated. Under the same circumstances our methods

can continue to compute a solution on a suboptimal mesh. Since both methods are

under development we have not attempted any detailed comparisons.

In Section 2 of this paper we develop a finite element Galerkin approxima-

tion to (1.1)-(1.3) using trapezoidal space-time elements. In Section 3 we

describe a practical and efficient mesh selection procedure that approximately

minimizes the L2error of the computed solution. In Section 4 we apply the

method to a number of problems and discuss the computed results. Finally, in

Section 5 we present an overall discussion of this effort and some suggestions

for future work.
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2. Finite Element Formulation

We discretize (1.1,2,3) using a finite element-Galerkin procedure. To this

end, let S be the strip
n

(2.1) S1; n : (x-t)10 < x < a, tn -< t < tn+l ,

choose "test" or "weight" functions v(x,t)CC0 (S ), multiply (1.1) by v, integrate

n

over Sn, and integrate the time derivative and diffusive terms by parts to get
ntn+1 a

F(u,v) : f f {-u vt + f(x,t,u,u )v + D(x,t,u)u v )dxdt
. ... . X ~ X X

t 0
(2.2)

a tn+l tn+l a
+fuv xj -f Duvdtj 0.

0 t=t t X=0
n n

Equation (2.2) is called the Galerkin form of the problem and any function u that

satisfies (2.1) and the initial and boundary conditions (1.2,3) is called a "weak

solution."

We introduce a mesh {0 = xn < x 2 < ... < X n = a) at t = t and a different mesh
N nn~ ~ . n+l f

{0 -- x +  < x2n+ 1 <'''.< n  =a) at t=t . We connect the corresponding points x.

1 X ~l
and xn + 1 by straight lines and consequently divide the strip S into a set of

1 n
n n+l

N - I trapezoids. We let x. (t) denote the straight line connecting x.i and x1 1 1

and T n denote the trapezoid with vertices (x,t ), (xn t  xn+l ,t
1 i n i+1'n' i+l n+l'

n+l
(xi ,tn+1 ) (cf. Figure l).

We approximate u(x,t) on Sn by U(x,t)C U K(S n ) which has the form

K
(2.3) U(x,t) = ci(t).i(x,t).

~ i=l

The "trial" functions *.(x,t), i = 1,2,...,K, can be used to construct a basis

for U (S n). They are selected to be of class C (S n) and, in finite element

methods, to have small support. Particular choices of i are given in Section
n Tn dta

2.1; herein, it suffices to note that i is nonzero only on T_ UT and that

K must be at least N.
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We determine U on S by solving a discrete problem of the form
- n

(2.4) P U(xO) P u0 (x) , n = 0

(2.5) F (U,v) = 0,VvcVK,

S* A A

(2.6) B U(0,tn+) = b(tn+l), B U(a,tn+l) = b2(tn+l).

0Here VK is a finite dimensional space of C (S ) functions that depends on theK n

boundary conditions (cf. Section 2.3), P is an interpolation operator (cf. Section

B , B2 , b are approximations of B , bl, B2, b obtained by numerical
2.3), Bi l' ! 2' -2 -I' 1' -2' -2

integration (cf. Section 2.3), and F(U,v) is an approximation of F(U,v) obtained by

evaluating the integrals in (2.2) numerically (cf. Section 2.2). Equations (2.5,6)

result in an MK dimensional nonlinear algebraic system for determining the Galerkin

coordinates c i(t n+), i = 1,2,...K, in terms of c. (tn), i = 1,2,...,Y. Since

c. (0), i = 1,2,...,K, are determined from the initial conditions (2.4), equations

(2.4-6) define a marching algorithm for determining U(x,t) in successive strips

S n, n = 0,1,...

If there were no boundary conditions we would select fi(x,t), i = 1,....K,

as a basis for V K . This prescription has to be modified slightly for i = 1 and/or

i = K (cf. Section 2.3) since boundary conditions are generally imposed; however,

it is still appropriate to write F(U,v) as a sum of contributions from each

trapezoid. Thus,
N-1

F(Uv) --E ff {-U Vt + f(x,t,tj,U )v + D(x,t,U)U v dx dt
- i= 1 Tn -. - -X - ---x x

(2.7) N-1I xi+1 (t) tn+l tn+ a

+ E [I U v dt] - DU v dt] = 0, v V
i=l x. (t) t=t t x=0

Since the bases for both the trial and test spaces have small support most

of the integrals in (2.7) will be zero. The algebraic system (2.5,6) will be

sparse and, hence, it may be solved effeciently.
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2.1. Selection of a Basis

A simple way to construct a basis on trapezoidal elements that satisfies

the necessary continuity requirements and has small support is to apply alocal

transformation that maps each trapezoid onto a rectangle. The inverse of this

transformation on Tn is
1

n n n E+l n+l nx = xi + (xi+l-xi)(2 ) + (x. -x.)T
1 1

+ (n+l n+1

(2.8) + x -x i  -x. + x) ()T,
il 1 1+1 i 2

t = tn + (t n+l-t n)T

It maps the rectangle

(2.9) R .1(,T] < < 1, 0 < T < 1)

n
in the (,T) plane onto 7. in the (x,y) plane.1

We choose this basis so that 4.(x,t) is a function of only on T.. To

be specific, we currently allow 4i(xt) to be either a piecewise linear or a

piecewise Hermite cubic polynomial in E on T..)

For piecewise linear approximations we construct a basis in terms of the

canonical basis function

(2.10) () -- (1-C) /2, -1 < < 1,

by defining

n
4)t , (x,t)CT

(2.11) $i(x,t) = $(- ), (x,t) CT i i = ,2,...,K N.

0 , otherwise

Thus, the dimension of the trial space UK is K N. Along the line x.(T) joining

n n+l
xn and x+ we have
J )

(2.12) 1i(x(T), t(T)) = 6ij, 0 < T < 1,

-6-
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where 6.. is the Kronecker delta. Using (2.3) this implies that

(2.13) c. (t) = U. () U(x. ( ), t (t)).

Thus, since only 4'. and 4i+ are nonzero on T.we have
1 i+l 1

(2.14) U(x,t) = U.(T)4'(F) + U (t)'(- ) , (x,t)c T.

For piecewise cubic Hermite approximations we construct a basis in terms of

the two canonical basis functions

1 1 2
(2.15) 4 4(2+F) -

by defining

S J (ri , x ,t ) C T n
1

(2.16a) 42 (x = (x,t) T, i 1,2 N

0 , other.ise

n
(x, t) C T.

1
n

(2.16b) 2i(x,t) - , (x,t) C T , i 1,2,...

0 ,otherwise

Thus, the dimension K of the trial space in 2N.

1
We note that -(x t)( CI (S ) with

2i-l n

(2.17a,b) 4 2i-l (x. (Tt(T)) ij 0, 0 - T -<

x

but i(x t) C0 (S ) with
2i 'n

(2.17c,d) t 2i(x (T),t(T)) = 0, 2i (xj(T),t(T)) = 6/x F(T), 0 < T <1.

x

The function x-(T) is easily computed from (2.8) as

(2. 1) x. (T) ix n n -x) + I.(Xn+ln+1 n +xnX)T, if (xt)f Tn'
C. 2 j +1 j 2 j4l1 j -j+1 j J*

Thus, x (T) is different on each trapezoid (unless the mesh is uniformn and

rectangular) and 42i (x,t) jumps as x crosses xi (T). However, using (2.3) and
x

-7-



(2.17) we can make Utx.t) of cla- C (S) by selecting

(2.19a) c (t) = U. (r) U(x. (T),t (T))-2i-1 -

(2.19b) c 2i(t) = x E()U (T) := x (T) U (x. (T) t(C))

Thus, on Tn we have
1

(2.20) U (x,t) = U. (T)'1() + U (t)M(.- ) + U (T)x (T)y'()
~il -+ -x

i+1

2.2 Numerical Integration

Ignoring the boundary conditions for the moment, we choose v = .(x,t)3
according to either (2.11) or (2.16) and use (2.8) to transform (2.7) to

N-I
(2.21) F(Uj) = I (U'4 j ) - ~ I (U', j ) = 0, j = 1,2,...,K,

i=l ~ -B

where

1 1

(2.22a) I. (Uv) = [ f {-U v t + f(xtU U x )v
0-1 .. . .

+ D(x,t,U)U v 2 }IJjdldT + l U v x~ ~ 1 -i 7=0

x=a, =l

(2.22b) I (Uv) = f D(x,t,U)U vx t dTIB0 X T X=0,x=-i

The functions E I x' X, t T, and J the Jacobian of the transformation

can be computed from (2.8).

In order to complete the specification of our numerical method we need to

select quadrature rules for evaluating the integrals in (2.22). We use the

Trapezoidal rule to evaluate the T integrals and a three point Gauss-Legendre

rule (cf. Abromowitz and Stegen [l], Chap. 25) to evaluate the E integrals.

The latter was chosen because it is known (cf. Strang and Fix [35]) to have the

same order discretization error as our finite element method with cubic

-8-



approximations and the exact integration of (2.22). At present, we also use the

three point Gauss-Legendre rule for linear approximations although it is more

accurate than necessary in this case and therefore somewhat inefficient.

Upon use of the above mentioned quadrature rules equations (2.25) become

N-1 ^ A

(2.23) F(U,4j) = ~Ii(U't j ) - I B(U', j ) = 0, j = 1,2,...,K,

where 1. and I denote the approximations of (2.22) that are obtained by nunerical
-B

integration.

2.3. Initial and Boundary Conditions. Solotion Technique.

The solution U is determined on S by solving (2.23) together with the~ n

initial and boundary conditions (2.4) and (2.6), respectively. We satisfy the

initial conditions (and implicitly define the interpolation operator P of (2.4))

by requiring

0 0
(2.24a) U 0 (x.), i =-1 -. 1

for both linear and cubic approximations, and additionally

(2.24b) U°  = u(x.), i =1,2,...N-x. -x i
1

for cubic approximations. Here

nn' n n'
Un  Ux (Y , n

(2.25) U : U(x,tn); .= t
-. Z 1 n x. x n

We obtain the approximate boundary conditions (2.6) by substi-

tuting (2.3) into (1.3), integrating the resulting equation from t to t+, and
n n+l'

evaluating the integrals by the Trapezoidal rule. Each boundary condition is

associated with a particular partial differential equation in the vector system.

The test space VK is modified by setting the test functions 1land N (for linear

approximations) or 2N-1 (for cubic approximations) equal to zero for those

partial differential equations associated with boundary conditions. This has

-9-



the effect of replacing the Galerkin approximation of a partial differential

equation at either x = 0 or x = a by its corresponding approximate boundary

condition.

The system (2.6), (2.23) is a nonlinear algebraic system for determining
U~ln+l Un+l i=12.. o

Un+ l , i = 1,2,...,N for linear approximations or U. , U , i , for
i X 1x.

1

cubic approximations given the same information at t = t . We solve this non-
n

linear system by Newton's method which requires the computation of the Jacobian

T n+l n+1 n-fl T
of the vector [F(U, 1I),F(U 2 ),...,F(U, K)] with respect to [U 1'U ...,U+I

n+l n+l n+l n+l n+l nl T
for linear approximations or [~ 1 , U X 2 ' x .. ~N , Ux for cubic

1 2
approximations. The Jacobian will be block tridiagonal because of the local

nature of i" The elements in the i th block of rows will be the MX M matrices

(2.26a) , j = i - 1, i, i + 1alU
n+ l

for linear approximations and the 2Mx 2M matrices H
B

aF(U, 21-1 iF(U,t 2i-1 i)ib

;Un+l ;un+l
~3 X.

(2.26b) , j i - 1, i, i + 1,

3(, 2i 3(,t 2i
U n+l aUn +l

for cubic approximations. The elements of (2.16) are obtained from (2.22,23) in

a relatively straightforward manner, but their computation requires users of our

code to supply subroutines that define f (x,t,u,u ), f (x,t,u,u ), and D (x,t,u).-u - -x 'u - -x -u
-X

Subroutines that define f(x,t,u,u ) and D(x,t,u) must, of course, also be supplied.

We calculate and factor the Jacobian once per time step and use U(x,t ) as an initial

guess for U(x,t n+l). The linearized Newton system is solved by an efficient block

tridiagonal algorithm that uses pivoting both within and outside of blks (cf.

Davis [111). Generally two iterations are performed per time step.

-10-



3. Adaptive Mesh Selection Strategy

In Section 2 we developed a finite element method to obtain numerical

solutions to systems of partial differential equations on nonuniform trape-

zoidal grids. In this section we construct an algorithm to select a grid at

t = tn+ 1 so that the L2 norm of the error at tn+ 1 is approximately minimized.

This algorithm builds upon the work of deBoor [12], Lawson [26], and Jupp

1231 on variable knot spline interpolation.

For most of this section we will be discussing approximations at a single

time level, say t = t , so whenever there is no possibility of confusion we

n n
omit the n superscript on x. and U. and surpress the t dependence when writing

u(x,t). We also present the development for scalar functions u and indicate

the extensions to vector functions in Section 3.2.

It is well known (cf. [10,35,36)) that the errors in finite element-

Galerkin methods for problems like (1.1-3) satisfy estimates of the form

(3.1) IHu-UHI < CHUt-PUIIL
2 2

where PUJ(UC interpolates u. Thus, the error in the solution of the partial

differential equation is bounded by an interpolation error. The following

result (cf. e.g. Pereyra and Sewell 131)) indicates how to minimize this

interpolation error for piecewise polynomial interpolants.

Lemma: Let TN := {0 = xI < x2 <---< xN = a) be a partition of [0,a)
C£+ 1

into N-1 subintervals and let u(x) Ct [O,a]. The piecewise poly-

nomial of degree t on (xi,x i+), i = 1,2, .... N-l, that interpolates

to u on IT has minimal L2 error when the knots xi, i = ...

are chosen such that

(3.2) ht+ Iu( +l)() E, i = l,2, N-I

where u (J) is the t the derivative of u with respect to x, Ci E (Xiox i+),E

is a constant, and

-11-



(3.3) h. x - x.

The Lemma states that the interpolation error is minimized by selecting the

partition in such a way that the quantity hi+llu(z+l) ) is ecuidistributed

Considerable success has been achieved by using this result to implement adaptive

grid algorithms for two-point boundary value problems (cf. Lentini and Pereyra

[27], Ascher, Christiansen, and Russell [2], or Russell and Christiansen [34]).

Nevertheless, some practical difficulties still remain and we discuss these and

our solutions to them below.

Rather than work with (3.2) directly, we follow Lawson [27] and Jupp [23]

and express (3.2) in the form

(3.4) pi := hi+l/hi = [u (+)( i)/u ( +l) (E.+l) ,.l/(.+l), i =

where 2 = 1 for piecewise linear and t = 3 for piecewise cubic approximations.

In addition to (3.4) we impose the constraint that

(3.5) hI + h2 + ... + hN1 = x N  I

This can be expressed in terms of the pi's by defining

(3.6) z := 1 + (p 1 ) + (pIP2 ) + (plp2 p 3 ) + ... + (plP2 ... PN_2

and observing that

(3.7) z = (h1 + h 2 + h 3 + ... + hN- 1 )/h,= (xN - X1)/h 1

Equations (3.3,4,6,7) permit us to determine h., i = 1,2,..., N-1, and1

Xi , i - 1,2,...,N, in terms of u(£+ I ) without an explicit determination of E.
(2.+i) (2.+i)

Of course, u is unknown and must be approximated by U The

finite element procedure provides us with an approximate solution U and for

cubics an approximate first derivative U . However, equation (3.4) requiresx

a knowledge of second derivatives for linear approximations and fourth deriva-

tives for cubic approximations. This situation typically arises in adaptive
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mesh algorithms and it is usually resolved by using finite difference approxima-

tions for the necessary higher derivatives.

DeBoor [12] used finite difference approximations to choose mesh points for

the solution of two-point boundary value problems by assuming that the (P.,l)st

derivative was constant on each subinterval. We modify this scheme slightly by

assuming that U (Z I ) is linear on each subinterval and takes on the followincT

values at the nodes: AU )/(h +h ) =I

1/2 2 1

26 M (h +h i = 2
1/2 2 1

((1+1) (2)

(3.8a) U ( +  (xi) = AUM /(h +h2) + AUM /(h +hi) i = 3,4,...,.,-l

6U ( 9) . /(h +h i N
N-3/2 N-I N-2

where

(() : (9) _(M.) )
(3.8) A i  ti+l i "

We use the approximation

(3.9a) Ui 1 /2 = (Ui - Ui 1 )/hi 1  r
for linear polynomials and

oil 3

(3.9b) Ui-1/2 = 12(U -Ui )/hi-l

+ 6(U +U )/h2
xi_1 xi

for cubic polynomials.
([ I)

We note that p. becomes infinite or indeterminate when u (Ei) = 0
(£ i

(cf. (3.4)); hence, we can expect numerical difficulties when u (x) is small

on any subinterval. Indeed numerical experiments have shown that the mesh

becomes very sensitive to small perturbations whenever U
(L+I (x) is of the same

order of magnitude as the discretization error in the computed solution U.
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We combat this problem by imposing a lower bound on JU(Z+l) (x). Thus,

we let Atn - (t nl-t n) and h - a/N denote the current time step and the average

mesh spacing, respectively, and for linear approximations we calculate !U (xi

as the maximum of the value computed by (3.8,9) and max(tt /h ,h ) while for

cubic approximations we calculate Iu(iv) (xi)I as the maximum of the value com-

puted by (3.8,9) and 12 max(Lt/h,h 2 ) + 6 max(At 4/h3 ,h2 ). These limits we-e

determined empirically. They are small enough so that thry do not affect the

(t+l)
mesh adaption procedure when U (x) is not small but large enough to avoid the

numerical difficulties caused by vanishing values of U (x). Observe that if

(t+l)
U (x) is uniformly small on [O,a] our limits assure that the solution of

(3.3,4,6,7) is a uniform mesh, as it should be in this case.

The discussion thus far has concerned the computation of an optimal grid

at a time level t where the solution Un has already been computed. We wouldn

also like to estimate an optimal grid at time level tn+1 prior to computing the

solution there. This can be done by extrapolating the optimal grids computed

at a number of previous time levels to t It was somewhat surprising that

numerical experiments seemed to favor zero order extrapolation; i.e., the optimal

grid computed at time level tn is used at time level t n+. Muiti-level extrapo-

lation consistently overestimated the distance that a mesh point should move in

one time step and then overcorrected this error in the next time step. In some

cases this caused the mesh to oscillate wildly when in fact the solution changed

very little. When we simply extrapolated the optimal mesh determined at the prev-

ious time level it tended to follow the solution even when rapidly moving fronts

were present.

It is easy to show that the mesh selection strategy (3.3,4,5,(,) maintains

the knot ordering so that no two mesh points can cross. It does not however

prohibit severely distorted trapezoidal elements. Ciarlet and Raviart [0] and

Babuska and Aziz [3] have studied the effect of element distortion on the

accuracy of the finite element method. They have shown that the error obtained
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when computing on trapezoidal elements is a multiple of the error obtained when

computing on rectangular elements. The multiplicative factor is proportional to

a power of the magnitude of the derivatives of the transformation (2.8). There-

fore we must control the magnitude of these derivatives in order to maintain

acceptable accuracy. We let

(3.10) hn n - xn At= - t . tan W) = hn/Lt
i i+l i' n+2 . i nl

Hence, . is the angle between the line x.(t) and the positive t axis.

Differentiating (2.8) and using (3.10) we find

X [h n + T(h l-h )1/2,
& i . 2.

(3.11) X At [tan w. + (tan co -tan wi) (C+1)/2],
T n 2. 1+1

t- 0, tT = Atn.

n adn+1
Since the magnitudes of had h are controlled by the bounds that we1 1

imposed on Iu(k+3) I and At is prescribed, we can limit the magnitude of then

derivativesin (3.11) by controlling the growth of Itan 03i1. We found that the

condition

(3.12) max iw I <  3'R/8

l<i<N i -

worked well in practice.

3.1. Mesh Selection Algorithm

In this section we discuss some details of a mesh selection algorithm based

on the discussion of the previous section. The first algorithm uses the finite

nelement solution II(x,t n ) calculated on the mesh x , i 1,2,....,N, and equations

(3.3,4,6,7) to find a new mesh at t - t that satisfies the optimality conditionn

(3.2). This is the mesh that should have been used to calculate U(x,t n). Instead

we use it in the second algorithm to estimate an optimal mesh at t = tn+l .
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The difficulty in solving (3.3,4,6,7) for the optimal mesh is that these

equations are nonlinear and must be solved iteratively. We use a relaxation

scheme that is similar to one which has been analyzed by Isaacson and Keller

[21, Chap. 3]. They give necessary convergence criteria, but, we chose not

to incorporate these into our algorithm because they require too much additional

computation. The following algorithm, which calculates the relaxation parameter

heuristically, has not failed to converge in any of our tests.

1. Set the relaxation parameter Q := 1 and let x.

nXi, i = 1,2,...,N be an initial guess for the optimal

mesh. Calculate

(0) ,(o)-x (0) (0)-x (0))
N 1 2 1

(1)
z :Z + 2

U :=I

where f is a convergence tolerance.

2. Compute

U(Z+ l) (x(0)

using equations (3.8,9).

3. While zv) -CV+l) >for V < max do
4. Calculate U(P£+l) (x v-l) 1,2,...,N by linear

interpolation of U ( x+.) x (0)

Calculate

i ) (9 + ) ( v .- 2i

i

and

^ (V) + (v (V) (V) (v) (V) (P )
Z p 1  p 1  p2  ) 1 P 2  "''PN-2 "
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5. If V > I then

If I (V) -(V-1) > Iz(-l)- ( V- 2 )Ihen --

6. Calculate

h(V) (x (-1) (v-i) V)
h-N x 1 )/zM xI) W /-()

(V) (V) (-i)xI  :=x I  :=x I

(V) ^ (V) Mv l
XN : N : N ,

X i+ 1  x) + h1i

h(V) (v) (v) . Nh. := hi p. , .. -

i+1 1

(V) ~(V) +Vl

i+1 i+l i+l

(v ) (X (V) ) vx (V) X(V)z -(N - x ) /x -

N 1 2 1i

7. V :=v +

For vector systems we need only to change the definition of p(N) used in step 3.

We used

(V) M (1+i) (v-i) (Z+I) ) 1i/(Z+l)
i j=1 U j + i i+2)

where Uj is the j th component of U.

^n+l (V)
After we compute a convergent mesh, x. = x. , i = 1,2.... N, we perform

the following:

1. Compute

S ^n+lnl

max 2<i<N-i

2. If Ax m At tan (371/8)-- max - nl

then Ax *Afix Ax max

else AXfix:, Atn tan(311/8).
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3. Compute corrected mesh x n1as

n+l n~ ^n+l- n
xCx X- X X )AX /AX
i i i i max fix,

i = 2,3,... ,N-1

Steps 2-3 prevent the elements from becoming too distorted.

The algorithms contain several approximations and heuristic procedures.

Derivatives are estimated by differences and are assu.med to vary linearly

between mesh points. Zero order extrapolation was used to predict optimal

grids at subsequent time levels. Grids were restrained to prevent severe

element distortion. Even with these approximations the mesh selection

algorithms performed satisfactorily on all test examples that we considered.

In addition we note that Rheinboldt [32) has shown that an order A error in

the placement of the optimal mesh only produces an order A change in the

computed solution. Thus, it suffices to only be close to the optimal mesh

in order to reap its benefits.



4. Computational Results

In this section we examine the performance of our method on four problems

which are graded in difficulty such that each one exercises an additional facet

of the method. The following norms are used to evaluate the performance of our

method on examples where exact solutions are known.

(4.1a) IIe(t) I :=II max le(x.,t)10 := max Iu(xi,t) - U(xit) I
l<i<N l<i<N

.2 N-2
(4.1b) IIe(t) IL (h /2)(Ie(x t)I, + Ie(x +t) 0)

where

(4.1c) IvI, : max Ivkl.
l<k<M

Example 1:

u t = (l/70 Uxx 0 < x < I, t > 0

(4.2)

u(x,O) = sin iT x, u(0,t) = u(lt) = 0.

The exact solution is

u(x,t) = e sin i x.

Analysis presented in [11] indicates that the finite element method des-

cribed in section 2 would have L2 error of O(h 
2 ) + O(At 2 ) with linear elements

4 2
and O(h ) + o(At ) with cubic elements on a uniform spacial mesh of width h and

a uniform time step of duration At. We created this simple constant coefficient

example to verify that these errors are actually attained. Figures 2 and 3

present plots of the L2 error at t = 1 as a function of h for linear and cubic

approximations, respectively.

The analysis of (11] predicts that the points on Figure 2 for which At = h

and the points in Figure 3 for which At = h2 should lie on straight lines having

-19-



slopes 2 and 4, respectively. These lines are shown confirming that the theor-

etical error bounds are actually attained.

Example 2:

(4.3a) ut =Ou + f(x), 0 < x < 1, t > 0, o > 0.
xx

The initial conditions, boundary conditions, and source f are chosen so that the

exact solution is

(4.3b) u(x,t) = tanh (r (x-l) + r t)
1 2

The solution (4.3b) is a wave that travels in the negative x direction

when r1 and r2 are positive. The values r1 and r2 determine the steepness of

the wave and its speed of propagation. Thus, the problem can be made more or

less difficult by adjusting rI and r2 .

We created this problem to study the effectiveness of our adaptive mesh

algorithm at concentrating grid points in transition regions, following moving

fronts, and reducing errors below those of uniform grid calculations.

We first solve problem (4.2) with r1 = r2 = 5, uniform time steps of

At = 0.01, 10 elements per time step, and linear approximations. The mesh com-

puted by our adaptive mesh algorithm is shown in Figure 4. The grid points are

concentrated in the region of maximum curvature and move to the left with the

wave. As the wave front passes out of the domain and u becomes small, the
xx

grid points move toward a uniform distribution. It is clear that the grid

adapts to the solution and follows its progress.

As a somewhat more difficult problem we solve (4.3a) with initial con-

ditions, boundary conditions, and forcing function chosen so that the solution

is given by (4.3b) with r1 = r2 = 100. The wave front is much steeper than in

the previous test of (4.3).
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In Table 1 we present a comparison at t = 1 of the results of computation

using linear approximations on a variety of uniform and variably spaced meshes.

These results are somewhat disappointing. At best the mesh moving scheme improves

the accuracy of the solution only slightly. The improvement is greatest when Lt

is small and in some cases, when At is large, the uniform mesh is more accurate.

A closer examination explains these results and reveals something about the nature

of this mesh moving scheme.

Table 1 shows that the solution of this problem was not computed accur-

ately with either a uniform or a variable mesh. This can be explained by examrin-

ing the time evolution of the solution at a fixed value of x, say x .The

solution is approximately given by -1 until the time when the wave reaches the

point x*. It then jumps suddenly to a value near 1. if the time step At is

too large to resolve this transition, we would expect larqe errors in the

vicinity of the wave. The solid curve in Figure 5 confirms this prediction.

The mesh selection procedure misinterprets these errors as being part of the

solution and places too many points in the region outside of the wave front.

Thus, a suboptimal mesh is selected and the expected decrease in the error is

not obtained. When At becomes small enough to adequately resolve the passina

wave the mesh selection procedure does improve the accuracy of the solution~

(cf. Table 1).

This points out the need for an algorithm to adaptively refine time steps

in the vicinity of severe temporal gradients. Such a procedure was used by

Berger et al. [5) to solve hyperbolic partial differential equations and we are

currently studying its suitability for our code.

Table 2 summarizes the results of computations performed on the same

problem using cubic approximations. in these cases the time steps At were

small enough to resolve the transition of the solution and the cubic
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approximations were accurate enough to provide us with reasonable estimates of

the derivatives. As a result, the variable mesh scheme improved the solution

significantly.

Figures 5 and 6 for linear and cubic approximations, respectively, show

that the mesh selection algorithm tends to distribute the local error evenly

over the domain and thus, as indicated in Section 3, approximately rdninizes

the error in L2.

Example 3: (Burgers' Equation)

ut  -uu + Cu 0 < x < 1, t > 0,
x x

(4.4)

u(x,0) = sin T x, u(0,t) = u(l,t) = 0,

-3
andC = 5 x 10

It is well known that the solution to this problem is a wave that steepens

and moves to the right until a shock layer forms at x = 1. After a time of 0(1/)

the wave dissipates and the solution decays to zero. Figures 7 and 8 show the

results of computations on this problem using linear approximations on a uniform

mesh and a variable mesh with a constant time step of At = 0.1 and 10 elements

per time step. The results in Figure 7 are typical of finite difference or finite

element calculations for this problem. Spurious oscillations develop in the com-

puted solution unless the mesh width is of the same order as the width of the

shock layer. which is O(YE) for this example. The variable mesh results in Figure

8 largely surpress these oscillations by automatically concentrating the mesh in

the shock region as the wave steepens.

When Example 3 is solved using cubic approximations on a uniform mesh we

find that the solution U at the nodes is computed accurately; however, there are
i

large errors in the slope of the solution Un at the nodes when the mesh is not
x.1

suitably fine in the shock region. This effect is exhibited in Figure 9 where
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the solution at t 0.6 is shown for a calculation performed with At = 0.1 and

N = 10. Equations (2.6,19,20,23) were used to calculate the solution between

mesh points.

One possible explanation of this behavior was proposed by Miller and

Miller (29], but they do not explain why the large error in the slopes do not

feed back and cause large errors in the function values.

Once again, these problems are corrected when the resh adapts with the

solution. Figure 10 shows the result of a similar computation using cubic

approximations on a variable mesh. Both the function values and slope values

are computed accurately at the nodes.

Example 4:

bt = [ x (s)bxIx - [b X (S)Sx x ,

(4.5)

s t  -k(s)b, 0 < x < 5, t > 0.

This two component nonlinear system was studied by Keller and Odell [24,30] as

a model for the chemotactic motion of bacteria. The quantity b(x,t) denotes

the bacterial density and s(x,t) denotes the concentration of the critical

substrate (bacterial food). If the functions pX and k satisfy conditions

derived by Keller and Odell [25), equations (4.5) have travelling wave solutions.

These solutions have been computed by Odell and Keller [30] and are interpreted

as travelling bands of bacteria. For our study we choose k(s) = 1, V(s) = 1o ,

and X(s) = 6 /s where V 0 and 6 are constants. The initial conditions are

shown in Figure lla and the boundary conditions are

(4.6) b(0,t) = b(5,t) = 0, s(0,t) = 1.

We solved this problem for 60/11 = 2 using cubic approximations, uniform

time steps of At = 0.005, and 50 elements per time step. The computed solutions

at t - 0, 0.1, 0.5, and 1.0 are shown in Figures lla,b,c, and d, respectively.
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The method places the majority of the mesh points in the regions of the wave

fronts and follows the bacterial motion. The results indicate that our ada~p-

tive mesh algorithm may be also used for vector systems of equations.
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5. Discussion and Conclusions

The computations presented in the last section show that it is possible to

construct an accurate and stable adaptive grid finite element method for nonlinear

systems of partial differential equations and that such techniques offer advantages

ver fixed grid techniques. In particular, we have shown that the error estimates

obtained by Davis [ll] are actually realized in practice and that the adaptive mesh

algorithm correctly concentrates the mesh in a sharp transition and is able to

follow moving fronts. Examples 3 and 4 of Section 4 indicate that our method is

also useful for nonlinear equations and vector systems of equations.

In the present study we used piecewise polynomial functions for both the

trial and test spaces. However, recent work of Flaherty and Plathon 1153 , Heinrich

et al. [18], and Hemker [19] indicates that exponential and "upwinded" polynomial

functions may give superior test spaces for singularly perturbed problems. We

plan to incorporate these functions into our methods shortly.

All of our calculations were performed with a constant time step. Exam~ples

3 and 4 of Section 4 indicate that it would be most desirable to be able to vary

the time step during the calculation. Our code presently allows for this, but as

yet we have not implemented an algorithm to adaptively alter the time step. We

also plan to add this feature to our code shortly.

Other areas for future study include free boundary problems and higher

dimensional problems. The present work has shown that it is possible to construct

a practical adaptive grid finite element method. Future work must refine this

method and apply it and test it on a greater variety of problems.
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TABLE 1

Results of Computations at t - 1 for Example 2 with r, r2 = 100 using Linear

Approximations on Uniform and Variably Spaced Grids.

Uniform Spacing Variable Spacing

NAt IeiL IjeljI. IlelL leII.

10 0.1 0.168 0.137 0.459 1.346

0.05 1.107 1.708 0.492 0.949

0.01 0.146 0.254 0.121 0.340

20 0.1 0.365 1.391 0.567 1.00

0.05 0.177 0.392 0.155 0.746

0.01 0.768 E-1 0.226 0.166 E-I 0.870 E-1

40 0.025 0.367 E-1 0.697 E-1 0.348 E-1 0.565 E-1

0.01 0.342 E-1 0.158 0.106 E-1 0.105

100 0.01 0.701 E-2 0.703 E-2 0.493 E-2 0.158 E-1

0.144 E-2 0.275 E-2



TABLE 2

Results of Computations at t - 1 for Example 2 with r, = r2 = 100 using Cubic

Approximations on Uniform and Varibly Spaced Grids.

Uniform Spacing Variable Spacing

N At Ilell Ilell Ilell Ilell,
2 2

10 0.01 0.607 E-1 0.801 E-I 0.130 E-1 0.232 E-1

14 0.005 0.319 E-1 0.257 E-1 0.332 E-2 0.602 E-2

20 0.01 0.214 E-I 0.394 E-1 0.167 E-1 0.951 E-I

0.005 0.185 E-1 0.309 E-I 0.483 E-2 0.950 E-2

0.0025 0.138 E-I 0.405 E-2 0.353 E-3 0.170 E-2
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Figure 3: L error vs. h for Example I computed on uniform meshes with cubic
22

approximations. The dotted line connects points for which ft a h2 .
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Figure 5: Local error at t -1.0 for Example 2 with r, r 2  100, uniformn time

steps of At - 0.01, N - 20, and linear approximations. The solid curve was com-

puted on a fixed uniform mesh, the broken curve on a variable mesh.
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Figure 6: Local error at t - 1.0 for Example 2 with rI  r 2 f 100, uniform time

steps of At - 0.0025, N - 20, and cubic approximations. The solid curve was com-

puted on a fixed uniform mesh, the broken curve on a variable mesh.
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Figure 6: Local error at t - 1.0 for Example 2 with r1  r 2 = 100, uniform time

steps of At - 0.0025, N - 20, and cubic approximations. The solid curve was com-

puted on a fixed uniform mesh, the broken curve on a variable mesh.
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Figure 7: Solution of Example 3 for various values of t using linear approxima-

tions on a uniform mesh with At - 0.1 and N = 10.
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Figure 8: Solution of Examrple 3 for various values of t using linear approxima-

tions, uniform time steps of t - 0.1, and a variable mesh with N - 10 elements

per time step.
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Figure 9: Solution of Example 3 at t - 0.6 using cubic approximiations on a uniform

JSIh with t -0.01 and N 10.



1.0

0.8-0.

0.66

U

0.4

0

002040.6 0.8 1.0

Figure 10: Solution of Example 3 for various values of t using cubic approximations,

uniform time steps of At -0.01, and a variable mesh with N -10 elements per time

step.
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Figure 11: Computational results for Example 4 with 6o/ -I 2.0 using uniform time

steps of At - 0.005, N - 50, and cubic approximations at t - 0, 0.1, 0.5, and 1.0.
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